Modeling and Determining the Structures of Proteins and Macromolecular Assemblies

Andrej Šali
http://salilab.org/

Depts. of Biopharmaceutical Sciences and Pharmaceutical Chemistry
California Institute for Quantitative Biomedical Research
University of California at San Francisco
Structure characterization of macromolecular assemblies

3. Low resolution: from “biochemical” information.
Determining the Structures of Proteins and Assemblies

Use structural information from any
source: measurement, first principles, rules,
resolution: low or high resolution
to obtain the set of all models that are consistent with it.

Maximize efficiency, accuracy, resolution, and completeness
of the structural coverage of protein assemblies.

Characterizing Macromolecular Assemblies by Satisfaction of Spatial Restraints

1) Representation of a system.
2) Scoring function (spatial restraints).
3) Optimization.

There is nothing but points and restraints on them.
Scoring Function

There is nothing but points and restraints on them.

\[P (R / I) = \prod_i p_i (r_i / I_i) \]

- \(R \) … all degrees of freedom
- \(I \) … all information
- \(r_i \) … \(i^{th} \) restrained feature (e.g., distance, angle, proximity, surface, density)
- \(I_i \) … information about \(i^{th} \) restrained feature

http://salilab.org/modeller/

Challenges at the frontiers of structural biology

Andrej Šali and John Kuriyan

FIGURE 1. Schematic diagram showing the range of accuracy obtained by comparative modelling\(^2\). The potential uses of comparative models depend on their accuracy. This in turn depends significantly on the sequence identity between the sequence modelled and the known structure on which the model was based. Sample models (red) are compared with the actual structures (blue).

FIGURE 3. The structure of the nucleosome core, as determined by Richmond and colleagues\(^4\). The histone proteins form a spiral-shaped octameric assembly around which DNA is coiled. The histone octamer consists of two copies each of four different histone proteins — H2A, H2B, H3, and H4. These proteins contain tails that are shown protruding from the nucleosome. The tails are likely to be important in stabilizing the arrangement of nucleosomes in higher-order structures. Copyright 1999, Lore Leighton, used with permission.
S. cerevisiae ribosome

Fitting of comparative models into 15Å cryoEM density map.

43 proteins could be modeled on 20-56% seq.id. to a known structure.

The modeled fraction of the proteins ranges from 34-99%.

Architecture of the protein-conducting channel associated with the translating 80S Ribosome

Comparative modeling and fitting into EM density

Maya Topf, Frank Alber, Matt Baker, Wah Chiu

Improve comparative modeling by fitting models into the target EM density map; Improve fitting into an EM density map by simultaneous model building.

Motivation:
• Number of known structures in PDB: ~30,000
• Number of known sequences modeled by CM: ~850,000

(Pieper et al., NAR 2004).
Errors in comparative models vs. resolution

- Incorrect templates
- Rigid-body movements
- Misalignments
- Regions without a template
- Distortion and shifts of aligned regions
- Sidechain packing

Resolutions:
- 20 Å
- 10 Å
- 2 Å
Fitting a model into an EM map (Mod-EM)

Developed a rigid body fitting procedure in MODELLER, MOD-EM, that optimizes a correlation coefficient between the map and a given model using a combination of grid search and Monte Carlo procedures.

Prepared a benchmark of 300 comparative models of varying accuracy covering the whole range of sequence-structure alignment accuracy for each of 20 test structures.

Tested how well is the best model selected by the quality of its fit into a given density map, as a function of resolution and noise.

Correlation between model accuracy and quality of a fit into density

$R^2 = 0.6 - 0.7$

Native (1dxt, circle): 1
Best model (square): 2
Template (1hbg, triangle): 132(8Å), 139(12Å)
Native structure

Most accurate model, Best-fitting model (rank 1)

Template (rank 5)

Best Prossall model (rank 256)
Quality of the best-fitting model

<table>
<thead>
<tr>
<th>Protein name</th>
<th>RMS error of the most accurate model (Å)</th>
<th>Difference between the RMS errors of the best-fitting model and the most accurate model (Å)</th>
<th>ProSali</th>
<th>Mod-EM</th>
<th>FOLDHUNTER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Noise level (σ)</td>
<td>Resolution of the map (Å)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>8</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>1CID</td>
<td>3.4</td>
<td>0.00</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>1MUP</td>
<td>3.3</td>
<td></td>
<td>0.3</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>1LGA</td>
<td>3.2</td>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>2CMD</td>
<td>2.5</td>
<td></td>
<td>1.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1DXT</td>
<td>2.0</td>
<td></td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1BBH</td>
<td>2.5</td>
<td></td>
<td>0.3</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>1ONC</td>
<td>2.2</td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1C2R</td>
<td>3.4</td>
<td></td>
<td>1.9</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Average</td>
<td>2.8</td>
<td>0.00</td>
<td>0.7</td>
<td>0.6</td>
<td>0.7</td>
</tr>
</tbody>
</table>

- **Average** shows the average RMS error of the most accurate model.
- **ProSali** column indicates the ProSali score.
- **Mod-EM** and **FOLDHUNTER** columns represent the difference in RMS errors for different noise levels and resolutions.
Conclusions (CM & EM)

- EM density maps at 5-15 Å resolution contain information that can be exploited in comparative modeling, both for improving sequence-structure alignment and for model building.

- Fitting comparative models instead of template structures into EM maps can make a large difference in the accuracy of the final hybrid atomic models.

- Scope: ~60 times more sequences can be modeled than have been determined by crystallography or NMR spectroscopy, and most of them are modeled on less than 30% sequence identity to the closest known structure.
Combined comparative modeling and fitting

fold assignment → alignment → model building (E, pdf, EM) → model assessment (E, pdf, EM) → E

S
Very Low-Resolution Modeling of Large Assemblies

Many times the structures of some subunits are not available.

In such cases, we can only model the configuration of the subunits in the complex.
The Yeast Nuclear Pore Complex

1. Structure
2. Evolution
3. Mechanism of assembly
4. Mechanism of action

Frank Alber, Damien Devos
UCSF

Jasmine Zhou
University of Southern California

Mike Rout
Tari Suprapto, Julia Kipper, Liesbeth Veenhoff, Svetlana Dokudovskaya

Brian Chait
Wenzhu Zhang
The Rockefeller University, New York
Nuclear Pore Complex (NPC)

Consists of broadly conserved nucleoporins (nups).

50 MDa complex: ~480 proteins of 30 different types.

Mediates all known nuclear transport, via cognate transport factors.

NPC
Use All Spatial Information

NUP Stoichiometry
NUP Localization
NUP- NUP Interactions
Symmetry
Global shape
NUP Shape
All Spatial Restraints on the NPC

Stoichiometry:
30 proteins, **456 copies** in total

Protein (and subcomplex) shape from Stokes radii:
1,680 intra protein distance restraints and **5,776** lower bound distance restraints

Excluded volume of proteins:
\(\sim 456^2/2 \) distance lower bounds

Protein-protein proximity: (immuno-purification)
5,472 upper distance bounds

Subcomplex connectivity: (immuno-purification)
3,344 binary restraints

Binary protein-protein contacts: from "overlay" experiments
208 binary restraints

Radial and axial localization of proteins: (IEM)
916 absolute positional restraints and **1,813** upper and lower distance restraints

Symmetry considerations: (cryo-EM)
\(\sim 100,000 \) symmetry distance and \(\sim 100 \) symmetry dihedral angle restraints and **5,596** angle restraints

Modeling in the context of the nuclear envelope: NE shape and dimension (EM)
876 membrane particles

Membrane spanning protein regions:
48 surface restraints, **112** volume restraints

Luminal Pom152 ring: (EM)
16 binary restraints
Tagging, Immunopurification and Analysis of Nucleoporin Subcomplexes

- several *hundred* pullouts
- ~1,300 protein bands identified by MS
Structural Information from Pullouts

Subcomplex Proximity restraint
upper distance bound between all subunit beads in a pullout

derived from assemblies in PIBASE*
Davis & Sali. *Bioinformatics, in press.*

Subcomplex **Connectivity restraint****
minimal connectivity between all subunits in a pullout
Optimization

• Start with a random configuration of protein centers.
• Minimize violations of input restraints by conjugate gradients and molecular dynamics with simulated annealing.
• Obtain an “ensemble” of many independently calculated models (~300,000).

Membrane spanning proteins:
Pom152 Pom34
Ndc1

FG repeat proteins:
Nup159 Nup60
Nsp1 Nup59
Nup1 Nup57
Nup100 Nup53
Nup116 Nup49
Nup145N Nup42

Nup84 complex:
Nup84 Seh1
Nup85 Sec13
Nup120 Nup145C
Nup133

Large Core proteins:
Nup192 Nup170
Nup188 Nup157

Nup82
Nic96
Protein Localization Probability

Calculated from the structural superposition of the ensemble of models that satisfy all input restraints
Protein Localization Probability

There is enough information to localize most nups

Nup188:

Immuno-EM
Stochiometry
Excluded volume
Symmetry
Nuclear Envelope

H = -∑ p_i log_2 p_i

H = 10.01
7.8
4.5
Average Mean Displacement of each Protein

There is enough information to localize most nups
Assessing the Well Scoring Models

1. How similar are the models to each other?

2. Do the models make sense given other data?

3. Using simple models as benchmarks.
Nup84 Complex Topology

Consistent with experimental data (not included in the calculations)

Structural characterization of assemblies from overall shape and subcomplex compositions

(i) the subunit excluded volume,
(ii) the assembly shape,
(iii) the subunit proximity in the subcomplex (the proximity restraint),
(iv) the subunit connectivity in the subcomplex (the connectivity restraint),
(v) the symmetry.
Test case

Data set: 27 pullouts

<table>
<thead>
<tr>
<th>Subunit excluded volume</th>
<th>Subcomplex proximity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subunit excluded volume</td>
<td>Subcomplex proximity</td>
</tr>
<tr>
<td>Assembly shape</td>
<td>Assembly shape</td>
</tr>
<tr>
<td>Subunit excluded volume</td>
<td>Subcomplex proximity</td>
</tr>
<tr>
<td>Assembly shape</td>
<td>Subcomplex connectivity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frequency contact maps</th>
<th>ROC-curves</th>
</tr>
</thead>
<tbody>
<tr>
<td>True positive rate: TPR</td>
<td>False positive rate: FPR</td>
</tr>
<tr>
<td>DRMS: smallest (average)</td>
<td></td>
</tr>
</tbody>
</table>

Alber, Kim, Sali, *Structure*, 2005
Towards a higher resolution structure of NPC

Characterize structures of the individual subunits, then fit them into the current low-resolution model.
A suite of programs, servers and databases for comparative protein structure modeling
http://salilab.org

LS-SNP
Web Server http://salilab.org/LS-SNP
Predicts functional impact of residue substitution

MODBASE
Database http://salilab.org/modbase
Fold assignments, alignments models, model assessments for all sequences related to a known structure

MODWEB
Web Server http://salilab.org/modweb
Provides a web interface to MODPIPE

CCPR
Center for Computational Proteomics Research http://www.ccpr.ucsf.edu

MODWEB
Program http://salilab.org/modweb
Implements most operations in comparative modeling

EVA
Web Server http://salilab.org/eva
Evaluates and ranks web servers for protein structure prediction

DBALI
Database http://salilab.org/dbali
Contains a comprehensive set of pairwise and multiple structure-based alignments

PIBASE
Database http://salilab.org/pibase
Contains structurally defined protein interfaces

MODELLER
Program http://salilab.org/modeller
Implements most operations in comparative modeling

MODPIPE
Program http://salilab.org/modpipe
Automatically calculates comparative models of many protein sequences

EVA
Program http://salilab.org/eva
Evaluates and ranks web servers for protein structure prediction

ICEDB/LIMS
Database/LIMS http://nysgxrc.org
Tracks targets for structural genomics by NYSGXRC

External Resources
PDB, Uniprot, GENBANK, NR, PIR, INTERPRO, Kinase Resource
UCSC Genome Browser, Pfam, SCOP, CATH
Fold Prediction
Devos, Dokudavskaya, Alber, Williams, Chait, Sali, Rout. PLoS Biology 12, 1, 2004

1) Simplicity of fold organization: 5 fold types describe 95 % of all residues in the NPC.
2) NPC has evolved through extensive gene duplication.

α-solenoid
Nup82
Nup84
Nup85
Nup145C
Nic96

β-propeller
Seh1
Sec13

Clathrin-like
Nup170
Nup157
Nup133
Nup120

unstructured-FG repeat regions
Nup100 Nsp1 Nup145N
Nup1 Nup57 Nup53
Nup116 Nup60
Nup159 Nup53

Coiled-coiled
Nsp1
Nup1
Nup60
Nup159
Nup57
Nup53

IgG-fold
Pom152

Trans-membrane helices
Pom152
Ndc1
Pom34
Eukaryotic evolution

Prokaryote → Modern Eukaryote

? Complex internal compartmentalization

How could such a complicated system evolve in organisms with no analogous transport system?
Summary: NPC Structure

There are models (configurations) that satisfy all input restraints.

These models are similar to each other in terms of protein-protein contacts.

The model is in harmony with some other data.

Simple models indicate feasibility.

The model inspired hopefully testable hypotheses about evolution of the NPC and coated vesicles (as well as the mechanism of pore formation).

The model will hopefully provide a starting point for a higher resolution characterization of the assembly (eg, EM, tomography, x-ray, cross-linking).
In Conclusion

The goal is a comprehensive description of the multitude of interactions between molecular entities, which in turn is a prerequisite for the discovery of general structural principles that underlie all cellular processes.

This goal will be achieved by a **tight** integration of experimental and computational approaches, spanning all relevant size and time scales.